Вариант № 2174

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Тип Д37 A37 № 1976
i

Вы­пол­ни­те дей­ствие  левая круг­лая скоб­ка 2 плюс 3i пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 1 минус i пра­вая круг­лая скоб­ка и опре­де­ли­те дей­стви­тель­ную часть числа



2
Тип Д37 A37 № 4041
i

Най­ди­те z, если \mathfrak Im z=2, z=x минус 4 плюс xi.



3
Тип Д37 A37 № 1956
i

Вы­чис­ли­те: i в сте­пе­ни левая круг­лая скоб­ка 24 пра­вая круг­лая скоб­ка плюс i в сте­пе­ни левая круг­лая скоб­ка 25 пра­вая круг­лая скоб­ка плюс i в сте­пе­ни левая круг­лая скоб­ка 26 пра­вая круг­лая скоб­ка .



4
Тип Д37 A37 № 4047
i

Вы­пол­ни­те дей­ствия, за­пи­ши­те число в ал­геб­ра­и­че­ской форме:  левая круг­лая скоб­ка 3 плюс 5i пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка 7 минус 2i пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка минус 3i пра­вая круг­лая скоб­ка .



5
Тип 1 № 3814
i

Упро­сти­те вы­ра­же­ние  ко­рень из: на­ча­ло ар­гу­мен­та: ко­рень из: на­ча­ло ар­гу­мен­та: 28 минус 16 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та конец ар­гу­мен­та конец ар­гу­мен­та .



6
Тип 1 № 2011
i

Упро­сти­те вы­ра­же­ние:  левая круг­лая скоб­ка 0,2 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 1 минус 0,2 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та пра­вая круг­лая скоб­ка .



7
Тип 3 № 3271
i

Най­ди­те зна­че­ние вы­ра­же­ния:  синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби минус синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби .



8
Тип 3 № 3638
i

Опре­де­ли­те чис­ло­вое зна­че­ние вы­ра­же­ния  синус 150 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка умно­жить на ко­си­нус 210 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка умно­жить на тан­генс 135 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка .



9
Тип 3 № 3376
i

Вы­чис­ли­те:  ко­си­нус левая круг­лая скоб­ка 2\arcctg левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка .



10
Тип 3 № 1958
i

Най­ди­те зна­че­ние вы­ра­же­ния:  синус левая круг­лая скоб­ка арк­си­нус дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс арк­ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс арк­тан­генс ко­рень из 3 минус Пи .



11
Тип 3 № 3131
i

Най­ди­те зна­че­ние вы­ра­же­ния: 2 ко­си­нус в квад­ра­те 15 гра­ду­сов минус 2 синус в квад­ра­те 15 гра­ду­сов .



12
Тип 3 № 1938
i

Вы­чис­ли­те  арк­си­нус дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби плюс арк­тан­генс левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из 3 конец дроби пра­вая круг­лая скоб­ка



13
Тип 3 № 2617
i

Най­ди­те зна­че­ние вы­ра­же­ния:

 тан­генс в квад­ра­те дробь: чис­ли­тель: 4 Пи , зна­ме­на­тель: 3 конец дроби синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби минус 2 ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс \ctg дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби .



14
Тип 3 № 2621
i

Най­ди­те зна­че­ние вы­ра­же­ния:  синус 54 гра­ду­сов умно­жить на синус 18 гра­ду­сов .



15
Тип 22 № 2151
i

 ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка ac пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та равен?



16
Тип 22 № 2091
i

Упро­сти­те вы­ра­же­ние:  левая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 12 конец дроби пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 1,2 пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1,5 пра­вая круг­лая скоб­ка .



17
Тип 12 № 2051
i

Pешите не­ра­вен­ство: 7 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 4x боль­ше 3x плюс 16.



18
Тип 5 № 3416
i

Ра­вен­ство | минус 7 плюс 3 k |=2 верно, если  k равно



19
Тип 12 № 1960
i

Bыбе­ри­те урав­не­ние, ко­то­рое яв­ля­ет­ся квад­рат­ным урав­не­ни­ем с одной пе­ре­мен­ной



20
Тип 5 № 3413
i

Най­ди­те от­ри­ца­тель­ный ко­рень урав­не­ния 8|x| минус 5|x| минус 17=0.



21
Тип 5 № 2056
i

Ре­ши­те урав­не­ние: 1,1|x| плюс 4,9|x| = 27.



22
Тип 12 № 3212
i

Pеше­ни­ем не­ра­вен­ства x в квад­ра­те плюс 2x минус 3 мень­ше или равно 0 яв­ля­ет­ся чис­ло­вой про­ме­жу­ток.



23
Тип 6 № 2083
i

Pешите си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний x в квад­ра­те плюс xy минус 2 = 0,y минус 3x = 7. конец си­сте­мы .



24
Тип 6 № 2188
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 5x минус 2y = 15, минус 2x плюс y = минус 7. конец си­сте­мы .



25
Тип 6 № 2468
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 81x в квад­ра­те = 99 плюс y в квад­ра­те ,y = 9x минус 3. конец си­сте­мы .



26
Тип Д38 A38 № 4118
i

Вы­чис­ли­те пре­дел \undersetx\to бес­ко­неч­ность \mathop\lim левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та в квад­ра­те плюс 6x минус 3 минус ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та в квад­ра­те минус 2x плюс 1 пра­вая круг­лая скоб­ка .



27
Тип Д38 A38 № 4125
i

Най­ди­те пре­дел в точке \undersetx\to 2\mathop\lim дробь: чис­ли­тель: 4x в квад­ра­те минус 4, зна­ме­на­тель: 4x в квад­ра­те минус 16x плюс 16 конец дроби .



28
Тип 13 № 3643
i

Cто­ро­ны тре­уголь­ни­ка равны 4 см, 5 см, 6 см. Най­ди­те про­ек­цию сред­ней сто­ро­ны на боль­шую.



29
Тип 13 № 3285
i

Най­ди­те угол В тре­уголь­ни­ка АВС, если А(1; 1), В(4; 1) и С(4; 5).



30
Тип 19 № 3349
i

Тра­пе­ция впи­са­на в окруж­ность так, что её боль­шее ос­но­ва­ние сов­па­да­ет с диа­мет­ром, а бо­ко­вая сто­ро­на равна ра­ди­у­су окруж­но­сти. Мень­ший угол тра­пе­ции равен?



31
Тип 19 № 3314
i

Пря­мо­уголь­ник ABCD впи­сан в окруж­ность. Дуга BC равна 40°. Мень­ший угол между диа­го­на­ля­ми пря­мо­уголь­ни­ка равен?



32
Тип 19 № 3524
i

Внеш­ний угол пра­виль­но­го два­дца­ти­уголь­ни­ка равен?



33
Тип 13 № 1943
i

В тре­уголь­ни­ке ACB AC  =  6, MN  =  4, AB  =  4,8, MN || AB. Най­ди­те MC.



34
Тип 13 № 3742
i

Окруж­ность, впи­сан­ная в рав­но­бед­рен­ный тре­уголь­ник, делит в точке ка­са­ния одну из бо­ко­вых сто­рон на два от­рез­ка (как по­ка­за­но на ри­сун­ке), длины ко­то­рых равны 15 и 2, счи­тая от вер­ши­ны. Най­ди­те длину ос­но­ва­ния тре­уголь­ни­ка.



35
Тип 15 № 3430
i

B еди­нич­ном кубе най­ди­те рас­сто­я­ние от вер­ши­ны В до плос­ко­сти (АСВ1).



36
Тип 15 № 3932
i

Най­ди­те угол между плос­ко­стя­ми, если  DC = MK =3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , DM =12 см и  CK =6 см.



37
Тип 15 № 2240
i

Из точки M про­ве­ден пер­пен­ди­ку­ляр MK, рав­ный 6 см к плос­ко­сти квад­ра­та ACPK. На­клон­ная MC об­ра­зу­ет с плос­ко­стью квад­ра­та угол 60°. Най­ди­те сто­ро­ну квад­ра­та.



38
Тип 15 № 3385
i

Най­ди­те вы­со­ту пи­ра­ми­ды, в ос­но­ва­нии ко­то­рой рав­но­сто­рон­ний тре­уголь­ник со сто­ро­ной 27 см и каж­дое ребро пи­ра­ми­ды об­ра­зу­ет угол 45° с плос­ко­стью ос­но­ва­ния.



39
Тип 15 № 2057
i

Из точки, не при­над­ле­жа­щей плос­ко­сти, про­ве­де­ны две на­клон­ные, ко­то­рые об­ра­зу­ют с плос­ко­стью углы рав­ные 30° и 60°. Сумма длин про­ек­ций этих на­клон­ных на плос­кость равна 8. Опре­де­ли­те длину мень­шей на­клон­ной.



40
Тип 10 № 3913
i

Най­ди­те ко­рень урав­не­ния  синус 3 x плюс ко­си­нус 3 x= ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , ко­то­рый при­над­ле­жит чис­ло­во­му ин­тер­ва­лу (90°; 180°).



41
Тип 10 № 1945
i

Ре­ши­те урав­не­ние  синус в квад­ра­те x минус 17 синус x плюс 16 = 0 и най­ди­те его корни на x при­над­ле­жит левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .



42
Тип 10 № 3517
i

Ре­ши­те урав­не­ние:  синус левая круг­лая скоб­ка 2x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка = 1.



43
Тип 10 № 3211
i

Из пред­ло­жен­ных ниже ва­ри­ан­тов най­ди­те серию, со­дер­жа­щую все ре­ше­ния урав­не­ния  синус 3 x плюс ко­си­нус 3 x=0.



44
Тип 10 № 3421
i

Ко­рень урав­не­ния  ко­си­нус 2 x минус синус x=0, при­над­ле­жа­щий про­ме­жут­ку  левая круг­лая скоб­ка 0; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , равен?



45
Тип 10 № 1965
i

Ре­ши­те урав­не­ние:  арк­си­нус x = ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби



46
Тип 10 № 1985
i

Ре­ши­те урав­не­ние:  ко­си­нус 5x плюс ко­си­нус 3x = 0



47
Тип 9 № 2541
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний x левая круг­лая скоб­ка 2x минус 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка боль­ше или равно 0,x в квад­ра­те минус 3x мень­ше 0. конец си­сте­мы .



48
Тип 9 № 2226
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 2x минус 1, зна­ме­на­тель: x конец дроби мень­ше 0, дробь: чис­ли­тель: 3x плюс 5, зна­ме­на­тель: x минус 2 конец дроби мень­ше или равно 0. конец си­сте­мы .



49
Тип 9 № 2163
i

Най­ди­те целые ре­ше­ния си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний 2 левая круг­лая скоб­ка 3x плюс 2 пра­вая круг­лая скоб­ка боль­ше 5 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка ,7 левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка мень­ше 3 левая круг­лая скоб­ка 2x плюс 3 пра­вая круг­лая скоб­ка . конец си­сте­мы .



50
Тип 9 № 1946
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 5 левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка мень­ше или равно 1 минус 2x,3x минус 1 мень­ше 15 плюс 11x. конец си­сте­мы .



51
Тип 9 № 2129
i

Pешите си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 2 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка боль­ше или равно 4 левая круг­лая скоб­ка 1 минус 3x пра­вая круг­лая скоб­ка ,x плюс 5 боль­ше 0. конец си­сте­мы .



52
Тип 9 № 1986
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 2x минус 5 мень­ше 4 минус x,7x минус 1 боль­ше или равно 9 плюс 12x конец си­сте­мы .



53
Тип 14 № 3389
i

Вы­чис­ли­те ин­те­грал:  при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка синус 3 x ко­си­нус 2 x минус ко­си­нус 3 x синус 2 x пра­вая круг­лая скоб­ка d x.



54
Тип 14 № 4142
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 0 до 5, дробь: чис­ли­тель: 6, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3x плюс 1 конец ар­гу­мен­та конец дроби dx.



55
Тип 18 № 4149
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной двумя пря­мы­ми: y=10x минус 15,y= минус 5x плюс 2, минус 3 мень­ше или равно x мень­ше или равно 5.



56
Тип 14 № 4127
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 4 до 5, левая круг­лая скоб­ка 3x в квад­ра­те минус 2x пра­вая круг­лая скоб­ка dx.



57
Тип 14 № 4135
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 12 до 15, левая круг­лая скоб­ка 4 ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс x пра­вая круг­лая скоб­ка dx.



58
Тип 18 № 4154
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те плюс x плюс 7,y= минус 3x плюс 3, минус 5 мень­ше или равно x мень­ше или равно 1.



59
Тип 18 № 4151
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y= минус x в квад­ра­те плюс 2x,y= минус x минус 1.



60
Тип Д39 A39 № 4234
i

Сколь­ки­ми спо­со­ба­ми можно со­ста­вить хо­ро­вод из четырёх де­ву­шек?



61
Тип Д39 A39 № 4228
i

Де­сять групп за­ни­ма­ют­ся в 10 рас­по­ло­жен­ных под­ряд ауди­то­ри­ях. Сколь­ко есть ва­ри­ан­тов рас­пи­са­ния, при ко­то­рых 1 и 2 груп­па за­ни­ма­ют­ся в со­сед­них ауди­то­ри­ях?



62
Тип Д39 A39 № 6796
i

В ма­га­зи­не про­да­ют­ся кон­фе­ты пяти сор­тов: ле­ден­цы, со­суль­ки, ирис­ки, суфле и шо­ко­лад­ные. Сколь­ки­ми спо­со­ба­ми можно ку­пить 6 кон­фет?



63
Тип Д39 A39 № 4243
i

Сколь­ко гео­мет­ри­че­ски раз­лич­ных пра­виль­ных тет­ра­эд­ров можно по­лу­чить, окра­ши­вая грани тет­ра­эд­ра-за­го­тов­ки в 4 раз­ных цвета?



64
Тип Д39 A39 № 6837
i

За круг­лый стол на 101 стул в слу­чай­ном по­ряд­ке са­дят­ся 99 маль­чи­ков и 2 де­воч­ки. Ка­ко­ва ве­ро­ят­ность, что между де­воч­ка­ми будет си­деть один маль­чик?



65
Тип Д39 A39 № 4217
i

Сколь­ки­ми спо­со­ба­ми могут быть рас­пре­де­ле­ны зо­ло­тая и се­реб­ря­ная ме­да­ли по ито­гам чем­пи­о­на­та мира по фут­бо­лу, если в со­рев­но­ва­нии участ­ву­ют 16 ко­манд?



66
Тип Д40 A40 № 2019
i

Из круга ра­ди­у­сом 10 вы­ре­за­ли квад­рат наи­боль­ше­го раз­ме­ра. Пло­щадь остав­шей­ся части круга при  Пи = 3,14 равна



67
Тип Д40 A40 № 3419
i

Чему равен угол \angle MON= альфа , если из­вест­но, что угол \angle KNM=55 гра­ду­сов .



68
Тип Д40 A40 № 3209
i

Oкруж­ность с цен­тром в точке О и ра­ди­у­сом 5 впи­са­на в угол MRN, гра­дус­ная мера ко­то­ро­го равна 60º. Рас­сто­я­ние от вер­ши­ны угла до цен­тра окруж­но­сти равно



69
Тип Д40 A40 № 1983
i

Чему равен угол \angle KON = альфа , если из­вест­но, что угол \angle KMN = 65 гра­ду­сов.



70
Тип Д40 A40 № 3552
i

Чему равен угол KPN, если из­вест­но, что угол \angle KON= альфа =130 гра­ду­сов .



71
Тип Д40 A40 № 2090
i

На ри­сун­ке O_1O_2 = 28. Ра­ди­у­сы окруж­но­стей O_1B = 14 и O_2A = 20. Длина от­рез­ка AB равна



72
Тип Д40 A40 № 3384
i

В окруж­но­сти с цен­тром O по­стро­е­ны две рав­ные хорды AB и AC. Угол ABC равен 20. Угол BOC равен



73
Тип Д40 A40 № 3355
i

К окруж­но­сти про­ве­де­на се­ку­щая СА. Тре­уголь­ник ВОЕ рав­но­сто­рон­ний с пе­ри­мет­ром 18. Длина ка­са­тель­ной СЕ равна



74
Тип Д41 A41 № 3252
i

Даны век­то­ры \veca левая круг­лая скоб­ка 3;2 пра­вая круг­лая скоб­ка и \vecb левая круг­лая скоб­ка 0; минус 1 пра­вая круг­лая скоб­ка . Най­ди­те аб­со­лют­ную ве­ли­чи­ну век­то­ра  левая круг­лая скоб­ка 5\veca плюс 10\vecb пра­вая круг­лая скоб­ка .



75
Тип Д41 A41 № 2065
i

Дан тре­уголь­ник с вер­ши­на­ми A (−1; −1), B (3; 5), C (3; 3). Точка D — се­ре­ди­на сто­ро­ны CB, точка K — се­ре­ди­на сто­ро­ны АВ. Ко­ор­ди­на­ты век­то­ра \overlineAO плюс \overlineCO равны



76
Тип Д41 A41 № 1990
i

Плос­кость за­да­на урав­не­ни­ем 3x плюс 2y минус z плюс 6 = 0. Рас­сто­я­ние от точки D (−1; 3; 2) до плос­ко­сти равно



77
Тип Д41 A41 № 3813
i

При па­рал­лель­ном пе­ре­но­се точке A(−3; 4) пе­ре­хо­дит в точку A′(1; −1), а точка B(2; −3) в точку B′. Най­ди­те ко­ор­ди­на­ты точки B′.



78
Тип Д41 A41 № 2415
i

Даны век­то­ры \veca левая фи­гур­ная скоб­ка 2 ; минус 1 ; 3 пра­вая фи­гур­ная скоб­ка , \vecb левая фи­гур­ная скоб­ка 0 ; 2 ; 1 пра­вая фи­гур­ная скоб­ка , \vecc левая фи­гур­ная скоб­ка минус 1 ; 0 ; 0 пра­вая фи­гур­ная скоб­ка . Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров \vecp и \vecq, если \vecp=2 \veca минус \vecb и \vecq=\veca минус 3 \vecc.



79
Тип Д41 A41 № 3216
i

Па­ра­мет­ри­че­ские урав­не­ния пря­мой, про­хо­дя­щей через точки A1(−2; 1; −3) и A2(4; 5; 6), имеют вид:



80
Тип 23 № 3217
i

Ре­ши­те урав­не­ние x в сте­пе­ни левая круг­лая скоб­ка 3 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 81 конец дроби .



81
Тип 16 № 3272
i

Ре­ши­те урав­не­ние:  ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та =2.



82

Pешите урав­не­ние  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 2 конец ар­гу­мен­та конец дроби пра­вая круг­лая скоб­ка 5 плюс 2=0, в от­ве­те за­пи­ши­те про­из­ве­де­ние кор­ней или ко­рень, если он един­ствен­ный.



83
Тип 23 № 1991
i

Ре­ши­те урав­не­ние:  ко­рень из: на­ча­ло ар­гу­мен­та: 2 минус ло­га­рифм по ос­но­ва­нию 2 x конец ар­гу­мен­та = ло­га­рифм по ос­но­ва­нию 2 x.



84
Тип 23 № 1971
i

Ре­ши­те урав­не­ние: 4 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 8 левая круг­лая скоб­ка 2x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 2 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2x минус 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка = 2 ко­рень 3 сте­пе­ни из 2 .



85
Тип 17 № 2443
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни левая круг­лая скоб­ка 2x минус 1 пра­вая круг­лая скоб­ка плюс 3 в сте­пе­ни левая круг­лая скоб­ка 2x минус 2 пра­вая круг­лая скоб­ка боль­ше 4,3x минус 10 мень­ше или равно 2. конец си­сте­мы .



86
Тип 17 № 3324
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка 2x плюс y в квад­ра­те пра­вая круг­лая скоб­ка =1,2 в сте­пе­ни левая круг­лая скоб­ка x плюс y в квад­ра­те пра­вая круг­лая скоб­ка минус 4=0. конец си­сте­мы .



87
Тип 17 № 1972
i

Най­ди­те число A, если A = x_1 плюс x_2 плюс y_1 плюс y_2, где { левая круг­лая скоб­ка x_1; y_1 пра­вая круг­лая скоб­ка ; левая круг­лая скоб­ка x_2; y_2 пра­вая круг­лая скоб­ка } яв­ля­ют­ся ре­ше­ни­ем си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний синус в квад­ра­те x плюс ко­си­нус y = 1, ко­си­нус в квад­ра­те x плюс ко­си­нус y = 1. конец си­сте­мы



88
Тип 17 № 3378
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус y пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби , ло­га­рифм по ос­но­ва­нию 5 10x минус ло­га­рифм по ос­но­ва­нию 5 y=1. конец си­сте­мы .



89
Тип 17 № 3448
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний y минус x=1, 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка y пра­вая круг­лая скоб­ка =12. конец си­сте­мы .



90
Тип 7 № 4187
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка ко­си­нус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка минус синус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.



91
Тип 7 № 4185
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка дробь: чис­ли­тель: 7, зна­ме­на­тель: 5 синус в квад­ра­те x конец дроби минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 8 ко­си­нус в квад­ра­те x конец дроби пра­вая круг­лая скоб­ка dx.



92
Тип 11 № 4201
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =5x левая круг­лая скоб­ка x в квад­ра­те плюс 4 пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 2;3 пра­вая круг­лая скоб­ка .



93
Тип 7 № 4172
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс x в кубе плюс x минус 3, зна­ме­на­тель: x в квад­ра­те плюс 1 конец дроби dx.



94
Тип 8 № 2520
i

В рав­но­сто­рон­ний конус впи­сан шар. Най­ди­те пло­щадь по­верх­но­сти шара, если об­ра­зу­ю­щая ко­ну­са равна 6 см.

(При­ме­ча­ние Решу ЕНТ: ви­ди­мо, рав­но­сто­рон­ним ко­ну­сом со­ста­ви­те­ли за­да­ния на­зы­ва­ют такой, у ко­то­ро­го осе­вое се­че­ние — рав­но­сто­рон­ний тре­уголь­ник.)



95
Тип 8 № 1974
i

Pас­сто­я­ние от цен­тра шара до плос­ко­сти се­че­ния равно 5 ко­рень из 3 . Ра­ди­ус шара 10, тогда ра­ди­ус се­че­ния шара равен



96
Тип 8 № 3815
i

Най­ди­те ра­ди­ус шара, если треть его диа­мет­ра равна 6.



97
Тип 8 № 1954
i

Pадиус кру­го­во­го сек­то­ра равен 6, а его угол равен 30º. Сек­тор свер­нут в ко­ни­че­скую по­верх­ность. Объем по­лу­чен­но­го ко­ну­са равен



98
Тип 8 № 4105
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 15 Пи . Най­ди­те объем V ци­лин­дра, если из­вест­но, что ра­ди­ус его ос­но­ва­ния боль­ше вы­со­ты на 3,5. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 6 умно­жить на V, зна­ме­на­тель: Пи конец дроби .



99
Тип 26 № 2626
i
Развернуть

Ка­ко­ва ве­ро­ят­ность на­у­гад взять фи­гу­ру, яв­ля­ю­щу­ю­ся телом вра­ще­ния?



100
Тип 27 № 2627
i
Развернуть

Учи­тель рас­ста­вил на одной полке шкафа по одной мо­де­ли фигур каж­до­го вида. Рядом сто­я­щая уче­ни­ца за­ме­ти­ла, что рас­ста­вить эти фи­гу­ры на полке можно в раз­лич­ном по­ряд­ке. Сколь­ко таких ва­ри­ан­тов раз­ме­ще­ния су­ще­ству­ет?


Завершить работу, свериться с ответами, увидеть решения.