Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 2174
1.  
i

Вы­пол­ни­те дей­ствие  левая круг­лая скоб­ка 2 плюс 3i пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 1 минус i пра­вая круг­лая скоб­ка и опре­де­ли­те дей­стви­тель­ную часть числа

1) −i
2) 5
3) −5
4) i
2.  
i

Най­ди­те z, если \mathfrak Im z=2, z=x минус 4 плюс xi.

1)  минус 2 плюс 2i
2) 2 плюс 2i
3)  минус 2 минус 2i
4) 2 минус 2i
3.  
i

Вы­чис­ли­те: i в сте­пе­ни левая круг­лая скоб­ка 24 пра­вая круг­лая скоб­ка плюс i в сте­пе­ни левая круг­лая скоб­ка 25 пра­вая круг­лая скоб­ка плюс i в сте­пе­ни левая круг­лая скоб­ка 26 пра­вая круг­лая скоб­ка .

1) −i
2) 1
3) i
4) −1
4.  
i

Вы­пол­ни­те дей­ствия, за­пи­ши­те число в ал­геб­ра­и­че­ской форме:  левая круг­лая скоб­ка 3 плюс 5i пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка 7 минус 2i пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка минус 3i пра­вая круг­лая скоб­ка .

1) z=14 минус 6i
2) z=10 плюс 6i
3) z= минус 10 плюс 6i
4) z=10 минус 6i
5.  
i

Упро­сти­те вы­ра­же­ние  ко­рень из: на­ча­ло ар­гу­мен­та: ко­рень из: на­ча­ло ар­гу­мен­та: 28 минус 16 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та конец ар­гу­мен­та конец ар­гу­мен­та .

1) 2 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус 1
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та плюс 1
4) 2 минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
6.  
i

Упро­сти­те вы­ра­же­ние:  левая круг­лая скоб­ка 0,2 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 1 минус 0,2 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та пра­вая круг­лая скоб­ка .

1) 0,56
2) 0,78
3) −0,56
4) −0,78
7.  
i

Най­ди­те зна­че­ние вы­ра­же­ния:  синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби минус синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби .

1) 1
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4) −2
8.  
i

Опре­де­ли­те чис­ло­вое зна­че­ние вы­ра­же­ния  синус 150 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка умно­жить на ко­си­нус 210 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка умно­жить на тан­генс 135 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка .

1)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
2)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
9.  
i

Вы­чис­ли­те:  ко­си­нус левая круг­лая скоб­ка 2\arcctg левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка .

1) −1
2) 0
3)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
10.  
i

Най­ди­те зна­че­ние вы­ра­же­ния:  синус левая круг­лая скоб­ка арк­си­нус дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс арк­ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс арк­тан­генс ко­рень из 3 минус Пи .

1)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
2)  Пи
3)  минус дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
11.  
i

Най­ди­те зна­че­ние вы­ра­же­ния: 2 ко­си­нус в квад­ра­те 15 гра­ду­сов минус 2 синус в квад­ра­те 15 гра­ду­сов .

1)  дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби
3)  ко­рень из 3
4) 1
12.  
i

Вы­чис­ли­те  арк­си­нус дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби плюс арк­тан­генс левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из 3 конец дроби пра­вая круг­лая скоб­ка

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
3)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби
13.  
i

Най­ди­те зна­че­ние вы­ра­же­ния:

 тан­генс в квад­ра­те дробь: чис­ли­тель: 4 Пи , зна­ме­на­тель: 3 конец дроби синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби минус 2 ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс \ctg дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби .

1) 2
2) 4
3) 0
4) 2,5
14.  
i

Най­ди­те зна­че­ние вы­ра­же­ния:  синус 54 гра­ду­сов умно­жить на синус 18 гра­ду­сов .

1) 0,125
2) 0,5
3) 1
4) 0,25
15.  
i

 ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка ac пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та равен?

1)  минус ac
2) a в квад­ра­те c в квад­ра­те
3)  минус |ac|
4) |ac|
16.  
i

Упро­сти­те вы­ра­же­ние:  левая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 12 конец дроби пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 1,2 пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1,5 пра­вая круг­лая скоб­ка .

1) 1
2) x в квад­ра­те
3) x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби
17.  
i

Pешите не­ра­вен­ство: 7 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 4x боль­ше 3x плюс 16.

1) нет ре­ше­ний
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка минус 4; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 16 пра­вая квад­рат­ная скоб­ка
18.  
i

Ра­вен­ство | минус 7 плюс 3 k |=2 верно, если  k равно

1) 2;  целая часть: 1, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 5
2) 3;  целая часть: 1, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 5
3) 3;  целая часть: 1, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3
4) −3;  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
19.  
i

Bыбе­ри­те урав­не­ние, ко­то­рое яв­ля­ет­ся квад­рат­ным урав­не­ни­ем с одной пе­ре­мен­ной

1) 5x плюс 3x в квад­ра­те = 8
2) 5x в сте­пе­ни 4 плюс 3x в квад­ра­те минус 18 = 0
3) 1,5x в квад­ра­те минус 8 плюс 25y в квад­ра­те = 0
4) 2x плюс 15 = 0
20.  
i

Най­ди­те от­ри­ца­тель­ный ко­рень урав­не­ния 8|x| минус 5|x| минус 17=0.

1)  минус целая часть: 5, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 5
2)  минус целая часть: 5, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3
3)  минус целая часть: 5, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 5
4)  минус целая часть: 5, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3
21.  
i

Ре­ши­те урав­не­ние: 1,1|x| плюс 4,9|x| = 27.

1) −6,5; 4,5
2) −4,5; 4,5
3) −5,5; 4,5
4) −4,5; 3,5
22.  
i

Pеше­ни­ем не­ра­вен­ства x в квад­ра­те плюс 2x минус 3 мень­ше или равно 0 яв­ля­ет­ся чис­ло­вой про­ме­жу­ток.

1) (−3; 1]
2) [−3; 1)
3) [−1; 3]
4) [−3; 1]
23.  
i

Pешите си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний x в квад­ра­те плюс xy минус 2 = 0,y минус 3x = 7. конец си­сте­мы .

1) (−1; 2); (0,75; 7,75)
2) (2; 1); (0,25; −7,75)
3) (−2; −1); (−0,25; 7,75)
4) (−2; 1); (0,25; 7,75)
24.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 5x минус 2y = 15, минус 2x плюс y = минус 7. конец си­сте­мы .

1) (3; 0)
2) (0; −7,5)
3) (1; 3)
4) (1; −5)
25.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 81x в квад­ра­те = 99 плюс y в квад­ра­те ,y = 9x минус 3. конец си­сте­мы .

1) (1; 6)
2) (0; −3)
3) (−1; −12)
4) (2; 15)
26.  
i

Вы­чис­ли­те пре­дел \undersetx\to бес­ко­неч­ность \mathop\lim левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та в квад­ра­те плюс 6x минус 3 минус ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та в квад­ра­те минус 2x плюс 1 пра­вая круг­лая скоб­ка .

1)  бес­ко­неч­ность
2) 1
3) 0
4) 4
27.  
i

Най­ди­те пре­дел в точке \undersetx\to 2\mathop\lim дробь: чис­ли­тель: 4x в квад­ра­те минус 4, зна­ме­на­тель: 4x в квад­ра­те минус 16x плюс 16 конец дроби .

1)  минус бес­ко­неч­ность
2) 1
3)  бес­ко­неч­ность
4) 2
28.  
i

Cто­ро­ны тре­уголь­ни­ка равны 4 см, 5 см, 6 см. Най­ди­те про­ек­цию сред­ней сто­ро­ны на боль­шую.

1) 3,75
2) 2,75
3) 1,75
4) 3,25
29.  
i

Най­ди­те угол В тре­уголь­ни­ка АВС, если А(1; 1), В(4; 1) и С(4; 5).

1) 90°
2) 60°
3) 135°
4) 120°
30.  
i

Тра­пе­ция впи­са­на в окруж­ность так, что её боль­шее ос­но­ва­ние сов­па­да­ет с диа­мет­ром, а бо­ко­вая сто­ро­на равна ра­ди­у­су окруж­но­сти. Мень­ший угол тра­пе­ции равен?

1) 70°
2) 45°
3) 55°
4) 60°
31.  
i

Пря­мо­уголь­ник ABCD впи­сан в окруж­ность. Дуга BC равна 40°. Мень­ший угол между диа­го­на­ля­ми пря­мо­уголь­ни­ка равен?

1) 55°
2) 20°
3) 35°
4) 40°
32.  
i

Внеш­ний угол пра­виль­но­го два­дца­ти­уголь­ни­ка равен?

1) 15°
2) 12°
3) 20°
4) 18°
33.  
i

В тре­уголь­ни­ке ACB AC  =  6, MN  =  4, AB  =  4,8, MN || AB. Най­ди­те MC.

1) 4
2) 5
3) 2
4) 3
34.  
i

Окруж­ность, впи­сан­ная в рав­но­бед­рен­ный тре­уголь­ник, делит в точке ка­са­ния одну из бо­ко­вых сто­рон на два от­рез­ка (как по­ка­за­но на ри­сун­ке), длины ко­то­рых равны 15 и 2, счи­тая от вер­ши­ны. Най­ди­те длину ос­но­ва­ния тре­уголь­ни­ка.

1) 7
2) 4
3) 6
4) 2
35.  
i

B еди­нич­ном кубе най­ди­те рас­сто­я­ние от вер­ши­ны В до плос­ко­сти (АСВ1).

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
3)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
36.  
i

Най­ди­те угол между плос­ко­стя­ми, если  DC = MK =3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , DM =12 см и  CK =6 см.

1) 90°
2) 30°
3) 60°
4) 45°
37.  
i

Из точки M про­ве­ден пер­пен­ди­ку­ляр MK, рав­ный 6 см к плос­ко­сти квад­ра­та ACPK. На­клон­ная MC об­ра­зу­ет с плос­ко­стью квад­ра­та угол 60°. Най­ди­те сто­ро­ну квад­ра­та.

1) 3 см
2)  ко­рень из 6 см
3) 2 ко­рень из 6 см
4) 6 см
38.  
i

Най­ди­те вы­со­ту пи­ра­ми­ды, в ос­но­ва­нии ко­то­рой рав­но­сто­рон­ний тре­уголь­ник со сто­ро­ной 27 см и каж­дое ребро пи­ра­ми­ды об­ра­зу­ет угол 45° с плос­ко­стью ос­но­ва­ния.

1) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
2) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
4) 9 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
39.  
i

Из точки, не при­над­ле­жа­щей плос­ко­сти, про­ве­де­ны две на­клон­ные, ко­то­рые об­ра­зу­ют с плос­ко­стью углы рав­ные 30° и 60°. Сумма длин про­ек­ций этих на­клон­ных на плос­кость равна 8. Опре­де­ли­те длину мень­шей на­клон­ной.

1) 6
2) 4
3) 3
4) 5
40.  
i

Най­ди­те ко­рень урав­не­ния  синус 3 x плюс ко­си­нус 3 x= ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , ко­то­рый при­над­ле­жит чис­ло­во­му ин­тер­ва­лу (90°; 180°).

1) 135°
2) 255°
3) 175°
4) 190°
41.  
i

Ре­ши­те урав­не­ние  синус в квад­ра­те x минус 17 синус x плюс 16 = 0 и най­ди­те его корни на x при­над­ле­жит левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
2)  минус Пи
3)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби
42.  
i

Ре­ши­те урав­не­ние:  синус левая круг­лая скоб­ка 2x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка = 1.

1)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс Пи k, k при­над­ле­жит Z
2) 2 Пи k, k при­над­ле­жит Z
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс Пи k, k при­над­ле­жит Z
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k, k при­над­ле­жит Z
43.  
i

Из пред­ло­жен­ных ниже ва­ри­ан­тов най­ди­те серию, со­дер­жа­щую все ре­ше­ния урав­не­ния  синус 3 x плюс ко­си­нус 3 x=0.

1)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс 3 Пи n,  n при­над­ле­жит Z
2)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс дробь: чис­ли­тель: Пи n, зна­ме­на­тель: 3 конец дроби ,  n при­над­ле­жит Z
3)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс 2 Пи n,  n при­над­ле­жит Z
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс дробь: чис­ли­тель: Пи n, зна­ме­на­тель: 3 конец дроби ,  n при­над­ле­жит Z
44.  
i

Ко­рень урав­не­ния  ко­си­нус 2 x минус синус x=0, при­над­ле­жа­щий про­ме­жут­ку  левая круг­лая скоб­ка 0; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , равен?

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
4) 0
45.  
i

Ре­ши­те урав­не­ние:  арк­си­нус x = ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби

1)  дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
3)  синус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
46.  
i

Ре­ши­те урав­не­ние:  ко­си­нус 5x плюс ко­си­нус 3x = 0

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби n; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k; n при­над­ле­жит Z ; k при­над­ле­жит Z .
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс 2 Пи n; Пи плюс 2 Пи k; n при­над­ле­жит Z ; k при­над­ле­жит Z .
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи n; Пи плюс 2 Пи k; n при­над­ле­жит Z ; k при­над­ле­жит Z .
4) \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс 2 Пи n; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи k; n при­над­ле­жит Z ; k при­над­ле­жит Z .
47.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний x левая круг­лая скоб­ка 2x минус 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка боль­ше или равно 0,x в квад­ра­те минус 3x мень­ше 0. конец си­сте­мы .

1) (2; 3)
2) [2; 3)
3) [0; 3]
4) (2; 3]
48.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 2x минус 1, зна­ме­на­тель: x конец дроби мень­ше 0, дробь: чис­ли­тель: 3x плюс 5, зна­ме­на­тель: x минус 2 конец дроби мень­ше или равно 0. конец си­сте­мы .

1) (0; 0,5)
2) [−0,6; 0,5)
3) [0; 0,5]
4)  левая квад­рат­ная скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
49.  
i

Най­ди­те целые ре­ше­ния си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний 2 левая круг­лая скоб­ка 3x плюс 2 пра­вая круг­лая скоб­ка боль­ше 5 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка ,7 левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка мень­ше 3 левая круг­лая скоб­ка 2x плюс 3 пра­вая круг­лая скоб­ка . конец си­сте­мы .

1) −9; −8; −7
2) −8; −7; −6; −5
3) −8; −7
4) −8; −7; −6
50.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 5 левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка мень­ше или равно 1 минус 2x,3x минус 1 мень­ше 15 плюс 11x. конец си­сте­мы .

1) [1; −2)
2) (3; 4)
3) (−2; 3]
4) (−2; 0]
51.  
i

Pешите си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 2 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка боль­ше или равно 4 левая круг­лая скоб­ка 1 минус 3x пра­вая круг­лая скоб­ка ,x плюс 5 боль­ше 0. конец си­сте­мы .

1) x боль­ше дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби
2) x боль­ше или равно дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби
3) x мень­ше или равно минус 5
4) x боль­ше или равно минус 5
52.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 2x минус 5 мень­ше 4 минус x,7x минус 1 боль­ше или равно 9 плюс 12x конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка 1; минус 2 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус 2; 3 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
53.  
i

Вы­чис­ли­те ин­те­грал:  при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка синус 3 x ко­си­нус 2 x минус ко­си­нус 3 x синус 2 x пра­вая круг­лая скоб­ка d x.

1) 1
2) 0,5
3) −0,5
4) 0
54.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 0 до 5, дробь: чис­ли­тель: 6, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3x плюс 1 конец ар­гу­мен­та конец дроби dx.

1) 5
2)  дробь: чис­ли­тель: 6, зна­ме­на­тель: 13 конец дроби
3) 14
4) 12
55.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной двумя пря­мы­ми: y=10x минус 15,y= минус 5x плюс 2, минус 3 мень­ше или равно x мень­ше или равно 5.

1)  дробь: чис­ли­тель: 3607, зна­ме­на­тель: 15 конец дроби
2)  дробь: чис­ли­тель: 3604, зна­ме­на­тель: 11 конец дроби
3)  дробь: чис­ли­тель: 3604, зна­ме­на­тель: 15 конец дроби
4)  дробь: чис­ли­тель: 3614, зна­ме­на­тель: 15 конец дроби
56.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 4 до 5, левая круг­лая скоб­ка 3x в квад­ра­те минус 2x пра­вая круг­лая скоб­ка dx.

1) 12
2) 24
3) 40
4) 52
57.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 12 до 15, левая круг­лая скоб­ка 4 ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс x пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 81 минус 128 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та плюс 76 ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 81 минус 128 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та плюс 80 ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: 81 минус 128 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та плюс 80 ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 65 минус 128 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та плюс 80 ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
58.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те плюс x плюс 7,y= минус 3x плюс 3, минус 5 мень­ше или равно x мень­ше или равно 1.

1) 21
2) 18
3) 24
4) 10
59.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y= минус x в квад­ра­те плюс 2x,y= минус x минус 1.

1)  дробь: чис­ли­тель: 13 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 6 конец дроби
2)  дробь: чис­ли­тель: 13 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 6 конец дроби
3)  дробь: чис­ли­тель: 13 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 6 конец дроби
4)  дробь: чис­ли­тель: 13 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 конец дроби
60.  
i

Сколь­ки­ми спо­со­ба­ми можно со­ста­вить хо­ро­вод из четырёх де­ву­шек?

1) 120
2) 6
3) 24
4) 16
61.  
i

Де­сять групп за­ни­ма­ют­ся в 10 рас­по­ло­жен­ных под­ряд ауди­то­ри­ях. Сколь­ко есть ва­ри­ан­тов рас­пи­са­ния, при ко­то­рых 1 и 2 груп­па за­ни­ма­ют­ся в со­сед­них ауди­то­ри­ях?

1) 362 880
2) 725 760
3) 1 451 520
4) 181 440
62.  
i

В ма­га­зи­не про­да­ют­ся кон­фе­ты пяти сор­тов: ле­ден­цы, со­суль­ки, ирис­ки, суфле и шо­ко­лад­ные. Сколь­ки­ми спо­со­ба­ми можно ку­пить 6 кон­фет?

1) 210
2) 252
3) 504
4) 126
63.  
i

Сколь­ко гео­мет­ри­че­ски раз­лич­ных пра­виль­ных тет­ра­эд­ров можно по­лу­чить, окра­ши­вая грани тет­ра­эд­ра-за­го­тов­ки в 4 раз­ных цвета?

1) 2
2) 4
3) 1
4) 8
64.  
i

За круг­лый стол на 101 стул в слу­чай­ном по­ряд­ке са­дят­ся 99 маль­чи­ков и 2 де­воч­ки. Ка­ко­ва ве­ро­ят­ность, что между де­воч­ка­ми будет си­деть один маль­чик?

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 100 конец дроби
2)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 50 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 25 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 50 конец дроби
65.  
i

Сколь­ки­ми спо­со­ба­ми могут быть рас­пре­де­ле­ны зо­ло­тая и се­реб­ря­ная ме­да­ли по ито­гам чем­пи­о­на­та мира по фут­бо­лу, если в со­рев­но­ва­нии участ­ву­ют 16 ко­манд?

1) 240
2) 16
3) 15
4) 256
66.  
i

Из круга ра­ди­у­сом 10 вы­ре­за­ли квад­рат наи­боль­ше­го раз­ме­ра. Пло­щадь остав­шей­ся части круга при  Пи = 3,14 равна

1) 212
2) 126
3) 38
4) 114
67.  
i

Чему равен угол \angle MON= альфа , если из­вест­но, что угол \angle KNM=55 гра­ду­сов .

1) 115°
2) 110°
3) 65°
4) 130°
68.  
i

Oкруж­ность с цен­тром в точке О и ра­ди­у­сом 5 впи­са­на в угол MRN, гра­дус­ная мера ко­то­ро­го равна 60º. Рас­сто­я­ние от вер­ши­ны угла до цен­тра окруж­но­сти равно

1)  дробь: чис­ли­тель: 10 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
2) 10
3)  дробь: чис­ли­тель: 8 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
4) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
69.  
i

Чему равен угол \angle KON = альфа , если из­вест­но, что угол \angle KMN = 65 гра­ду­сов.

1) 115°
2) 65°
3) 110°
4) 130°
70.  
i

Чему равен угол KPN, если из­вест­но, что угол \angle KON= альфа =130 гра­ду­сов .

1) 115°
2) 105°
3) 110°
4) 120°
71.  
i

На ри­сун­ке O_1O_2 = 28. Ра­ди­у­сы окруж­но­стей O_1B = 14 и O_2A = 20. Длина от­рез­ка AB равна

1) 6
2) 8
3) 9
4) 7
72.  
i

В окруж­но­сти с цен­тром O по­стро­е­ны две рав­ные хорды AB и AC. Угол ABC равен 20. Угол BOC равен

1) 120°
2) 140°
3) 45°
4) 80°
73.  
i

К окруж­но­сти про­ве­де­на се­ку­щая СА. Тре­уголь­ник ВОЕ рав­но­сто­рон­ний с пе­ри­мет­ром 18. Длина ка­са­тель­ной СЕ равна

1) 4 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2) 8
3) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
74.  
i

Даны век­то­ры \veca левая круг­лая скоб­ка 3;2 пра­вая круг­лая скоб­ка и \vecb левая круг­лая скоб­ка 0; минус 1 пра­вая круг­лая скоб­ка . Най­ди­те аб­со­лют­ную ве­ли­чи­ну век­то­ра  левая круг­лая скоб­ка 5\veca плюс 10\vecb пра­вая круг­лая скоб­ка .

1) 15
2) 13
3) 13
4) 17
75.  
i

Дан тре­уголь­ник с вер­ши­на­ми A (−1; −1), B (3; 5), C (3; 3). Точка D — се­ре­ди­на сто­ро­ны CB, точка K — се­ре­ди­на сто­ро­ны АВ. Ко­ор­ди­на­ты век­то­ра \overlineAO плюс \overlineCO равны

1)  левая круг­лая скоб­ка дробь: чис­ли­тель: 13, зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 8, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 14, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 7, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка
76.  
i

Плос­кость за­да­на урав­не­ни­ем 3x плюс 2y минус z плюс 6 = 0. Рас­сто­я­ние от точки D (−1; 3; 2) до плос­ко­сти равно

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
3)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: ко­рень из 7 , зна­ме­на­тель: 4 конец дроби
77.  
i

При па­рал­лель­ном пе­ре­но­се точке A(−3; 4) пе­ре­хо­дит в точку A′(1; −1), а точка B(2; −3) в точку B′. Най­ди­те ко­ор­ди­на­ты точки B′.

1) B′(6; −8)
2) B′(−3; −4)
3) B′(4; −5)
4) B′(−2; −3)
78.  
i

Даны век­то­ры \veca левая фи­гур­ная скоб­ка 2 ; минус 1 ; 3 пра­вая фи­гур­ная скоб­ка , \vecb левая фи­гур­ная скоб­ка 0 ; 2 ; 1 пра­вая фи­гур­ная скоб­ка , \vecc левая фи­гур­ная скоб­ка минус 1 ; 0 ; 0 пра­вая фи­гур­ная скоб­ка . Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров \vecp и \vecq, если \vecp=2 \veca минус \vecb и \vecq=\veca минус 3 \vecc.

1) 39
2) 15
3) 27
4) 37
79.  
i

Па­ра­мет­ри­че­ские урав­не­ния пря­мой, про­хо­дя­щей через точки A1(−2; 1; −3) и A2(4; 5; 6), имеют вид:

1)  си­сте­ма вы­ра­же­ний x=2 плюс 6 t, y= минус 1 плюс 4 t, z=3 плюс 9 t; конец си­сте­мы .
2)  си­сте­ма вы­ра­же­ний x= минус 2 плюс 6 t, y= минус 1 плюс 4 t, z= минус 3 плюс 9 t; конец си­сте­мы .
3)  си­сте­ма вы­ра­же­ний x= минус 2 минус 6 t, y=1 плюс 4 t, z= минус 3 минус 9 t; конец си­сте­мы .
4)  си­сте­ма вы­ра­же­ний x= минус 2 плюс 6 t, y=1 плюс 4 t, z= минус 3 плюс 9 t; конец си­сте­мы .
80.  
i

Ре­ши­те урав­не­ние x в сте­пе­ни левая круг­лая скоб­ка 3 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 81 конец дроби .

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби ; 5
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; 81
81.  
i

Ре­ши­те урав­не­ние:  ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та =2.

1) 2
2) 0
3) 3
4) 1

Pешите урав­не­ние  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 2 конец ар­гу­мен­та конец дроби пра­вая круг­лая скоб­ка 5 плюс 2=0, в от­ве­те за­пи­ши­те про­из­ве­де­ние кор­ней или ко­рень, если он един­ствен­ный.

1) 4
2) 2
3) 1
4) 3
83.  
i

Ре­ши­те урав­не­ние:  ко­рень из: на­ча­ло ар­гу­мен­та: 2 минус ло­га­рифм по ос­но­ва­нию 2 x конец ар­гу­мен­та = ло­га­рифм по ос­но­ва­нию 2 x.

1) 2
2) 4
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
84.  
i

Ре­ши­те урав­не­ние: 4 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 8 левая круг­лая скоб­ка 2x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 2 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2x минус 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка = 2 ко­рень 3 сте­пе­ни из 2 .

1) 4
2) 3
3) 8
4) 9
85.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни левая круг­лая скоб­ка 2x минус 1 пра­вая круг­лая скоб­ка плюс 3 в сте­пе­ни левая круг­лая скоб­ка 2x минус 2 пра­вая круг­лая скоб­ка боль­ше 4,3x минус 10 мень­ше или равно 2. конец си­сте­мы .

1) (1; 2)
2) [0; 2]
3) [1; 2]
4) (1; 4]
86.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка 2x плюс y в квад­ра­те пра­вая круг­лая скоб­ка =1,2 в сте­пе­ни левая круг­лая скоб­ка x плюс y в квад­ра­те пра­вая круг­лая скоб­ка минус 4=0. конец си­сте­мы .

1) ре­ше­ний нет
2) (1; −2)
3) (−1; 1), (1; 1)
4) (1; −1), (1; 1)
87.  
i

Най­ди­те число A, если A = x_1 плюс x_2 плюс y_1 плюс y_2, где { левая круг­лая скоб­ка x_1; y_1 пра­вая круг­лая скоб­ка ; левая круг­лая скоб­ка x_2; y_2 пра­вая круг­лая скоб­ка } яв­ля­ют­ся ре­ше­ни­ем си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний синус в квад­ра­те x плюс ко­си­нус y = 1, ко­си­нус в квад­ра­те x плюс ко­си­нус y = 1. конец си­сте­мы

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи n плюс 4 Пи k, n, k при­над­ле­жит Z
2) 1 плюс 4 Пи n плюс 4 Пи k, n, k при­над­ле­жит Z
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи n плюс 4 Пи k, n, k при­над­ле­жит Z
4) 1 плюс 2 Пи n плюс 2 Пи k, n, k при­над­ле­жит Z
88.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус y пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби , ло­га­рифм по ос­но­ва­нию 5 10x минус ло­га­рифм по ос­но­ва­нию 5 y=1. конец си­сте­мы .

1) (2; 4)
2) (8; 2)
3) (5; 4)
4) (4; 1)
89.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний y минус x=1, 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка y пра­вая круг­лая скоб­ка =12. конец си­сте­мы .

1) (3; 4)
2) (0; 1)
3) (3; 2)
4) (2; 3)
90.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка ко­си­нус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка минус синус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.

1)  синус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс ко­си­нус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби пра­вая круг­лая скоб­ка плюс C
2)  синус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс синус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби пра­вая круг­лая скоб­ка плюс C
3)  синус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс ко­си­нус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби пра­вая круг­лая скоб­ка плюс C
4)  синус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс ко­си­нус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби пра­вая круг­лая скоб­ка плюс C
91.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка дробь: чис­ли­тель: 7, зна­ме­на­тель: 5 синус в квад­ра­те x конец дроби минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 8 ко­си­нус в квад­ра­те x конец дроби пра­вая круг­лая скоб­ка dx.

1)  минус дробь: чис­ли­тель: 7, зна­ме­на­тель: 5 конец дроби тан­генс x плюс дробь: чис­ли­тель: 5, зна­ме­на­тель: 8 конец дроби тан­генс x плюс C
2)  дробь: чис­ли­тель: 7, зна­ме­на­тель: 5 конец дроби тан­генс x плюс дробь: чис­ли­тель: 5, зна­ме­на­тель: 8 конец дроби тан­генс x плюс C
3)  дробь: чис­ли­тель: 7, зна­ме­на­тель: 5 конец дроби \ctg x минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 8 конец дроби тан­генс x плюс C
4)  минус дробь: чис­ли­тель: 7, зна­ме­на­тель: 5 конец дроби \ctg x минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 8 конец дроби тан­генс x плюс C
92.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =5x левая круг­лая скоб­ка x в квад­ра­те плюс 4 пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 2;3 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс 10x в квад­ра­те минус 57
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс 10x в квад­ра­те
3)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби x в кубе плюс 10x в квад­ра­те минус 57
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс 10x
93.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс x в кубе плюс x минус 3, зна­ме­на­тель: x в квад­ра­те плюс 1 конец дроби dx.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби x левая круг­лая скоб­ка 2x в квад­ра­те плюс 3x минус 6 пра­вая круг­лая скоб­ка минус 3 арк­тан­генс x плюс C
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби x левая круг­лая скоб­ка 2x в квад­ра­те плюс 3x минус 6 пра­вая круг­лая скоб­ка минус 2 арк­тан­генс x плюс C
3)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби x левая круг­лая скоб­ка 2x в квад­ра­те минус 3x минус 6 пра­вая круг­лая скоб­ка минус 2 арк­тан­генс x плюс C
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби x левая круг­лая скоб­ка 2x в квад­ра­те плюс 3x минус 6 пра­вая круг­лая скоб­ка плюс 2 арк­тан­генс x плюс C
94.  
i

В рав­но­сто­рон­ний конус впи­сан шар. Най­ди­те пло­щадь по­верх­но­сти шара, если об­ра­зу­ю­щая ко­ну­са равна 6 см.

(При­ме­ча­ние Решу ЕНТ: ви­ди­мо, рав­но­сто­рон­ним ко­ну­сом со­ста­ви­те­ли за­да­ния на­зы­ва­ют такой, у ко­то­ро­го осе­вое се­че­ние — рав­но­сто­рон­ний тре­уголь­ник.)

1) 13 Пи см2
2) 15 Пи см2
3) 16 Пи см2
4) 12 Пи см2
95.  
i

Pас­сто­я­ние от цен­тра шара до плос­ко­сти се­че­ния равно 5 ко­рень из 3 . Ра­ди­ус шара 10, тогда ра­ди­ус се­че­ния шара равен

1) 4
2) 5
3) 3 ко­рень из 3
4) 8
96.  
i

Най­ди­те ра­ди­ус шара, если треть его диа­мет­ра равна 6.

1) 12
2) 9
3) 6
4) 10
97.  
i

Pадиус кру­го­во­го сек­то­ра равен 6, а его угол равен 30º. Сек­тор свер­нут в ко­ни­че­скую по­верх­ность. Объем по­лу­чен­но­го ко­ну­са равен

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 143 конец ар­гу­мен­та Пи , зна­ме­на­тель: 4 конец дроби
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 143 конец ар­гу­мен­та Пи , зна­ме­на­тель: 8 конец дроби
3)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 143 конец ар­гу­мен­та Пи , зна­ме­на­тель: 6 конец дроби
4)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 143 конец ар­гу­мен­та Пи , зна­ме­на­тель: 24 конец дроби
98.  
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 15 Пи . Най­ди­те объем V ци­лин­дра, если из­вест­но, что ра­ди­ус его ос­но­ва­ния боль­ше вы­со­ты на 3,5. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 6 умно­жить на V, зна­ме­на­тель: Пи конец дроби .

1) 225
2) 196
3) 250
4) 200
99.  
i

В ка­би­не­те ма­те­ма­ти­ки име­ет­ся шкаф с тремя пол­ка­ми для мо­де­лей объ­ем­ных раз­но­цвет­ных фигур — пи­ра­мид, шара, па­рал­ле­ле­пи­пе­да, ко­ну­са, приз­мы, тет­ра­эд­ра, ци­лин­дра общим ко­ли­че­ством 14 штук (по две мо­де­ли каж­до­го вида).

Ка­ко­ва ве­ро­ят­ность на­у­гад взять фи­гу­ру, яв­ля­ю­щу­ю­ся телом вра­ще­ния?

1)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 7 конец дроби
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: конец дроби 14
4)  дробь: чис­ли­тель: 3, зна­ме­на­тель: конец дроби 14
100.  
i

В ка­би­не­те ма­те­ма­ти­ки име­ет­ся шкаф с тремя пол­ка­ми для мо­де­лей объ­ем­ных раз­но­цвет­ных фигур — пи­ра­мид, шара, па­рал­ле­ле­пи­пе­да, ко­ну­са, приз­мы, тет­ра­эд­ра, ци­лин­дра общим ко­ли­че­ством 14 штук (по две мо­де­ли каж­до­го вида).

Учи­тель рас­ста­вил на одной полке шкафа по одной мо­де­ли фигур каж­до­го вида. Рядом сто­я­щая уче­ни­ца за­ме­ти­ла, что рас­ста­вить эти фи­гу­ры на полке можно в раз­лич­ном по­ряд­ке. Сколь­ко таких ва­ри­ан­тов раз­ме­ще­ния су­ще­ству­ет?

1) 120
2) 320
3) 5040
4) 1400